
Describing the properties of chains of segments

interacting via soft-core potentials of variable

range with the SAFT-VR approach

Lowri A. Davies, Alejandro Gil-Villegas,

and George Jackson

Department of Chemistry,

University of Sheffield,

Sheffield, S3 7HF, UK.

Running title: SAFT-VR for LJ Chain Molecules

Number of pages: 12 (including figure captions)

Figures: 4

1



Abstract
We present a general development for the equation of state of chain molecules com-

posed of tangent spherical segments interacting with a soft repulsive potential and an
attractive well. The method is based on a recent version of the statistical associating fluid
theory for chain molecules with interaction potentials of variable range (SAFT-VR). In this
communication we focus our attention on the properties of Lennard-Jones chains (LJC),
using SAFT-VR and a simple recipe for the evaluation of the chain free energy that requires
only a knowledge of the contact value of the cavity function of a Sutherland-6 system. We
study the liquid-vapour coexistence properties for different values of the chain length. The
results obtained are of similar accuracy to other EOS for LJC, but our approach is sim-
pler and more general. We show that standard perturbation theories developed for simple
liquids can also be used for chain molecules.
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1 Introduction

The statistical associating fluid theory (SAFT) [1, 2] is a very accurate theory for the

properties of a wide range of fluid systems and their mixtures. It is based on a perturbation

theory for associating fluids proposed by Wertheim [3]-[8], where molecules are modelled as

chains of spheres with dispersion forces, and short-range attractions that mimic association.

The two major advantages of the SAFT approach are: that the equation of state is obtained

from the properties of the constituent monomeric segments, and that each one of the terms

can be directly compared with, and tested against, molecular simulation.

Several extensions of SAFT have been developed, differing from the original the-

ory in the way that the monomer segments and the interactions are described. Complex

association processes (e.g., the formation of ring aggregates [9]-[12], double bonding [13]

and bond co-operativity [14]), as well as chains composed of dimer segments [15, 16] have

been studied. The different versions of SAFT have all proven to be very successful in their

description of real substances.

Recently, we have proposed a version of SAFT for hard spheres interacting via

attractive wells of variable range (SAFT-VR) [17]. We have shown that the range parameter

is a useful quantity in the description of experimental systems since it accounts for the non-

conformal behaviour present in liquids and their mixtures. Moreover, SAFT-VR comprises

a compact representation of the monomer properties, in the framework of the Barker and

Henderson perturbation theory for simple liquids [18, 19, 20], which can be easily extended

to mixtures.

In this paper we consider a further extension of SAFT-VR to account for chain

molecules which are formed from soft-core segments with variable repulsive and attractive

ranges. We demonstrate that the analytical expressions developed previously for the hard-

core models together with a Barker and Henderson effective hard-sphere diameter [20] can

be used for this purpose. As a specific application, we present an equation of state for

Lennard-Jones chains. This system has been studied extensively in the past, and a number

of accurate equations of state have been reported [21]-[25]. Our main goal is to show that

SAFT-VR provides a simple and compact equation of state for LJC which is valid for ranges

of density and temperature of practical interest.

We first summarise the SAFT-VR equation of state for hard-core systems interacting

with a Sutherland-λ potential, and then use this model for a description of the Mie m− n

family of potentials [26], of which the Lennard-Jones potential is a specific case (m = 6 and
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n = 12). We also present a simple recipe for the calculation of the free energy due to chain

formation, and the prediction of LJC properties are compared with simulation results.

2 SAFT-VR for Pure Fluids

The Helmholtz free energy for associating chain molecules is described in the SAFT ap-

proach as

A

NkT
=
AIDEAL

NkT
+
AMONO.

NkT
+
ACHAIN

NkT
+
AASSOC.

NkT
, (1)

where the different terms in this equation correspond to the contributions to the free en-

ergy due to the ideal fluid, the monomer segments, chain formation and intermolecular

association, respectively.

The free energy of an ideal gas is given by [27]

AIDEAL

NkT
= ln(ρΛ3)− 1, (2)

where ρ = N/V is the number density of chain molecules and not of monomer segments.

Considering this term separately means that all of the other terms are residual free energies.

We consider that the general form of the monomer-monomer interaction is given by

a hard-sphere repulsive term plus an attractive well:

uM(r; σ, ε, λ) =

{
∞ if r < σ

−εφ(r;λ) if r > σ,
(3)

where σ is the spherical hard-core diameter, while ε, φ and λ are, the depth, the shape and

the range parameter of the attractive well, respectively. In the SAFT-VR approach [17]

different potential models can be used for the attractive well. Here, we will only consider

the Sutherland potential, which takes the form,

φS(r;λ) = (σ/r)λ. (4)

The range parameter λ controls the decay of the interaction. By varying λ, different angle-

averaged multipolar-like forces, such as the Mie m-n potentials can be modelled with this

potential.
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The contribution to the free energy due to the monomers (m of which make up each

chain molecule) interacting with a potential of the form given in Eq. (3) is

AMONO.

NkT
= ms

AM

NskT

= msa
M , (5)

where Ns is the total number of spherical monomers, and aM = AM/(NskT ) is the excess

Helmholtz free energy per monomer segment. An accurate description of aM is obtained

from the high-temperature expansion given by the Barker and Henderson perturbation

theory for hard-core systems [18, 19, 20],

aM = aHS + βa1 + β2a2, (6)

where β = 1/kT , and a1 and a2 are the first two perturbation terms associated with the

attractive well. The mean-attractive energy a1 is given by [20]

a1 = −2πρsε
∫ ∞
σ

r2φ(r)gHS (r) dr, (7)

where ρs = Ns/V is the density of monomers (segments) and gHS(r) is the radial distribu-

tion function of the hard-sphere reference system. By using the mean-value theorem, gHS(r)

can be factorised from the integral and written in terms of its contact value gHS(1; ηeff),

an effective packing fraction ηeff , and the van der Waals mean-field term aVDW1 [17]:

a1 = aVDW1 gHS(1; ηeff ), (8)

where

gHS(1; ηeff ) =
1− ηeff/2

(1− ηeff )3
, (9)

is obtained from the Carnahan and Starling expression [28]. In the case of the Sutherland

potential,

aVDW1 = −4ηε
(

3

λ− 3

)
, (10)

where η = πσ3ρs/6 is the packing fraction of the system, and

ηeff (η, λ) = c1η + c2η
2, (11)
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with

(
c1

c2

)
=
(
−0.943973 0.422543 −0.0371763 0.00116901
0.370942 −0.173333 0.0175599 −0.000572729

)
1
λ
λ2

λ3

 . (12)

The second-order term can be calculated in the local compressibility approximation

[20],

aS2 (λ) =
1

2
εKHSη

∂aS1 (2λ)

∂η
, (13)

where KHS is the Percus-Yevick hard-sphere isothermal compressibility, [20]

KHS =
(1− η)4

1 + 4η + 4η2
. (14)

The contribution to the free energy due to the formation of a chain of m monomers

is [1, 21]

ACHAIN

NkT
= −(ms − 1) ln yM(σ), (15)

where yM(σ) is the monomer-monomer background correlation function evaluated at hard-

core contact; if gM(r) is the monomer-monomer radial distribution function, then yM(r) =

exp[uM(r)/kT ]gM (r). In the SAFT-VR approach a perturbation expansion is used for the

monomer-monomer contact value of the radial distribution function [20],

gM (σ+) = gHS(σ+) + βεg1(σ
+), (16)

and g1(σ+) is obtained from a self-consistent calculation of the pressure, using the virial

theorem of Clausius and the derivative of the free energy with respect to density. For the

Sutherland potential we obtain [17]:

gS(σ+) = gHS(σ) +
1

4
β

[
∂aS1
∂η
−

λ

3η
aS1

]
. (17)

The value of gS(σ+) is also required in the calculation of the association free energy term.

It must be stressed that all that is needed for the calculation of the complete equation of
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state is a hard-sphere equation of state and the mean attractive energy a1, which is given

in terms of the hard-sphere contact value of g.

The contribution to the Helmholtz free energy due to association for s sites on the

chain molecules is obtained from the theory of Wertheim as [29]

AASSOC.

NkT
=

[
s∑

a=1

(
lnXa −

Xa

2

)
+
s

2

]
, (18)

where the sum is over all s sites a on a molecule, and Xa is the fraction of molecules not

bonded at site a. The latter quantity is obtained by a solution of the following mass action

equation:

Xa =
1

1 +
∑s
b=1 ρXb∆a,b

. (19)

The function ∆a,b characterises the association between site a and site b on different

molecules. It can be written in terms of the contact value gM(σ) of the monomer-monomer

radial distribution function, the Mayer function fa,b = exp(−ψa,b/kT )−1 of the a-b site-site

bonding interaction ψa,b, and the volume Ka,b available for bonding as [30]

∆a,b = Ka,bfa,bg
M(σ). (20)

The bonding volume Ka,b can be determined from the parameters of the bonding site such

as its position and range [30]. As for the chain contribution, gM (σ) is approximated by

gS(σ+).

3 SAFT-VR for Lennard-Jones Chains

The expressions presented in the previous section can be used to develop an equation of

state for chain molecules interacting via the Miem−n potentials [26], of which the Lennard-

Jones (m = 6 and n = 12) is the most common example. The Mie m − n potentials are

given by

uM = Cε
[(
σ

r

)n
−
(
σ

r

)m]
, (21)

where

C =
n

n−m

(
n

m

) m
n−m

. (22)
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Systems interacting with binary potentials with soft repulsive interactions like Eq.

(21) can be described within the Barker and Henderson perturbation theory, by considering

an equivalent potential with a hard-core temperature dependent diameter,

uMBH =

{
∞ if r < σBH(T )
uM if r > σBH(T ),

(23)

where

σBH(T ) =
∫ σ

0
(1− exp(−βuM))dr, (24)

and σ defines the position where uM changes sign. The free energy is then calculated with

the expansion (6) using the packing fraction

ηBH(T ) = η (σBH/σ)3 . (25)

The expressions for a1, a2 and g(σ+) derived earlier (Eqs. (8), (13) and (17)) can be used

directly in the expressions for the soft-core systems. Since the family of Mie potentials

can be represented by a sum of an attractive and of a repulsive Sutherland potential, the

mean-attractive energy for such systems can be expressed as the sum of two Sutherland a1

terms,

aMIE
1 = C

[
−aS1 (ηBH;λ = n) + aS1 (ηBH;λ = m)

]
, (26)

where aS1 corresponds to the mean-attractive energy for a Sutherland system with exponent

λ. The second order term a2 is given in terms of the repulsive contribution only as

aMIE
2 = CaS2 (ηBH;λ = m). (27)

For the LJ fluid we can apply this recipe with the following parametrisation for σBH

[17]:

σBH/σ = 0.995438 − 0.0259917T ∗ + 0.00392254T ∗2 − 0.000289398T ∗3 , (28)

where T ∗ = kT/ε. In order to calculate the contribution to the free energy due to chain

formation, we require the monomer cavity function at the bonding distance, yMb . For

systems interacting with soft repulsive interactions, the bond distance is σ, i.e., where the

potential is zero. Since in the SAFT-VR approach the molecules are formed from effective
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hard-core segments with diameter σBH, the bond length is σBH and yMb can be calculated

according to

yMb = yLJ(σBH), (29)

where yLJ is the cavity function of the hard-core LJ potential from the Barker and Hender-

son perturbation theory. We have found that a more accurate prediction of the properties

of the Lennard-Jones chains is obtained with the approximation

yMb = yS6(σBH) (30)

where yS6 is the Sutherland-6 potential contact value, obtained directly from Eq. (17).

With this approximation, the final expression for the chain free energy is

ACHAIN

NkT
= −(ms− 1) ln yS6(σBH). (31)

4 Results

The vapour-liquid phase equilibria of Lennard-Jones chains of length ms =2, 4 and 8

obtained using the SAFT-VR approach outlined in the previous section are compared with

existing Gibbs ensemble Monte Carlo (GEMC) simulation results [25] in Figure 1. The

SAFT-VR description for monomers (ms = 1) given previously [17] and the corresponding

GEMC simulation results [31] are also shown. The SAFT-VR theory gives a good overall

description of the coexistence region, and reproduces the effect of increasing the chain length

The theory’s adequacy is, however, seen to decrease as the chain length increases, which can

be rationalised in terms of an inaccurate description of molecular structure, such as folding,

which occurs as the chain length increases [24]. It is well known that the SAFT approach

accurately describes the behaviour of long-chain molecules up to ms = 8 [15]. Various

super-critical isotherms calculated using the SAFT-VR approach for LJC with ms =2, 4

and 8 are presented in Figures 2, 3 and 4, respectively. The SAFT-VR expressions are

seen to compare favourably with results obtained with the equation of state proposed by

Johnson et al. [24]; these authors used an accurate empirical representation for gLJ(σ). The

approximation used in Eq. (31) gives an accurate prediction of the vapour-liquid envelope,

as well as the pressure for the whole range of monomer densities ρ∗s. Our equation of state

overpredicts the residual internal energy for densities ρ∗s > 0.7.
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5 Conclusions

We have presented a general equation of state for associating chain molecules interacting

via potentials with soft-core repulsive interactions. This EOS is based on the recently

developed SAFT-VR approach, together with a simple recipe for the evaluation of the

chain free energy from the properties of the Sutherland-λ potential. We have seen that

in the case of Lennard-Jones chains, an accurate description is obtained for vapour-liquid

coexistence properties.
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Figure Captions

Figure 1. The vapour-liquid coexistence densities for Lennard-Jones chains of

length ms compared with the Gibbs ensemble simulation data of Panagiotopoulos [31]

(ms = 1), and of Escobedo and de Pablo [25] (ms =2, 4 and 8). The continuous curves

correspond to the SAFT-VR approach, and each is labelled with the values of the chain

length ms. The reduced parameters used are T ∗ = kT/ε and ρ∗s = ρsσ
3.

Figure 2. The reduced pressure P ∗ = Pσ3/ε of Lennard-Jones chains with ms =

2 (diatomics) as a function of the reduced monomer density ρ∗s = ρsσ
3. The squares,

diamonds, circles and triangles are the molecular dynamics simulation results of Johnson

et al. [24] for T ∗ = kT/ε =5, 4, 3 and 2, respectively. The continuous curves correspond

to the SAFT-VR predictions.

Figure 3. The reduced pressure P ∗ = Pσ3/ε of Lennard-Jones chains with ms = 4

as a function of the reduced monomer density ρ∗s = ρsσ
3. The diamonds, circles and trian-

gles are the molecular dynamics simulation results of Johnson et al. [24] for T ∗ = kT/ε =4,

3 and 2, respectively. The continuous curves correspond to the SAFT-VR prediction.

Figure 4. The reduced pressure P ∗ = Pσ3/ε of Lennard-Jones chains with ms = 8

as a function of the reduced monomer density ρ∗s = ρsσ
3. The diamonds, circles and trian-

gles are the molecular dynamics simulation results of Johnson et al. [24] for T ∗ = kT/ε =4,

3 and 2, respectively. The continuous curves correspond to the SAFT-VR prediction.
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